Generalized Skew Derivations and Left Ideals in Prime and Semiprime Rings

Vannali Sreenivasulu¹ and Dr. R. Bhuvana Vijaya²

^{1*}Research Scholar, Department of Mathematics, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu-515002, Andhra Pradesh, India. Email Id: sreelakshminivas@gmail.com ²Professor, Department of Mathematics, JNTUA College of Engineering, Anantapuramu-515002, Andhra Pradesh, India. Email Id:bhuvanarachamalla@gmail.com

Abstract: Let *R* be an associative ring, *I* a nonzero left ideal of *R*, *G* : $R \rightarrow R$ a generalized skew derivation with an associated nonzero skew derivation d and an automorphism α . In this paper, we study the following situations in prime and semiprime rings: (1) $G(x \circ y) = a(xy \pm yx)$; (2) $G[x, y] = a(xy \pm yx)$; (3) $d(x)od(y) = a(xy \pm yx)$; for all $x, y \in I$ and $a \in \{0, 1, -1\}$.

Key words: Prime rings, semiprime rings, skew derivations, generalized skew derivations, left ideals.

1. INTRODUCTION :

Throughout this paper, R is an associative ring, I a left ideal of R, $G : R \rightarrow R$ a generalized skew derivation associated with a nonzero skew derivation d and an automorphism α of R. For any two elements x, $y \in R$, [x, y] will denote the commutator element xy - yx and xoy = xy + yx. We use extensively the following basic commutator identities: [xy, z] = x[y, z] + [x, z]y and [x, yz] =[x, y]z + y[x, z]. A ring R is said to be prime ring, if for any $x, y \in R, xRy = 0$ implies that either x = 0 or y = 0 and is called semiprime ring if for any $x \in R$, xRx = 0 implies x = 0. An additive mapping $d: R \rightarrow R$ is said to be a derivation of R if for any $x, y \in R$, d(xy) = d(x)y + xd(y). By a skew derivation of R we mean an additive map dfrom R into itself which satisfies the rule d(xy) = $d(x)y + \alpha(x)d(y)$ for all $x, y \in R$ and α being an automorphism of R. For $\alpha = 1$ is the identity automorphism of R, d is known as a derivation of R. In particular, for a fixed $a \in R$, the mapping I_a : $\mathbf{R} \to \mathbf{R}$ given by $I_a(x) = [x, a]$ is a derivation called an inner derivation of R. An additive mapping $G: R \rightarrow R$ is called a generalized inner derivation if G(x) = ax + xb, for fixed $a, b \in R$. For such a mappings G(xy) = G(x)y + x[y,b] = $G(x)y + xI_h(y)$ for all x, $y \in R$. Motivated by the above observation, Bresar introduced the concept of generalized derivation as well as left multiplier mapping of R into R. The generalized derivation Gof R is defined as an additive mapping $G: R \to R$ such that G(xy) = G(x)y + xd(y) holds for any x, $y \in R$, where d is a derivation of R. So, every derivation is a generalized derivation, but the converse is not true in general. If d = 0, then we have G(xy) = G(x)y for all $x, y \in R$, which is called a left multiplier mapping of R. Thus, generalized derivation generalizes both the

concepts, derivation on R. An additive mapping G: $R \rightarrow R$ is said to be a (right) generalized skew derivation of R if there exists a skew derivation *d* of R with an associated automorphism α such that $G(xy) = G(x)y + \alpha(x)d(y)$ holds for all $x, y \in R$.

In [1], Daif and Bell proved that if R is a semiprime ring with a nonzero ideal I and d is a derivation of *R* such that $d([x, y]) = \pm [x, y]$ for all $x, y \in I$, then I is central ideal. In particular, if I = R, then R is commutative. Recently, Quadri et al. [2] have generalized this result replacing derivation d with a generalized derivation in a prime ring R. In [3] Dhara has studied all the results of [2] in semiprime ring. Recently, Dhara and Patanayak [4] studied the results concerning generalized derivations. More precisely they studied the following cases in prime rings and semi prime rings; (1) $G(x \circ y) = a(xy \pm yx)$; (2) $G[x, y] = a (xy \pm yx); (3)$ d(x)od(y) = $a(xy \pm yx)$; for all x, $y \in I$ and $a \in \{0, 1, -1\}$, where I being a left ideal of R and G is a generalized derivation of R. In the present paper, our aim is to discuss similar identities by taking G as a generalized skew derivation of R.

2. MAIN RESULTS :

Theorem 2.1. Let *R* be a semiprime ring and *I* a non-zero left ideal of *R*. If *G* is a genealized skew derivation of *R* associated with a non-zero skew derivation *d* and an automorphism α of *R* such that $G(x \circ y) = a(xy \pm yx)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, then $\alpha[I, I]d(I) = 0$.

Proof: If G(I) = 0, then $0 = G(xy) = G(x)y + \alpha(x)d(y) = \alpha(x)d(y)$ for all $x, y \in I$ (2.1). Hence $\alpha(I)d(I) = 0$. Replacing x by $xz, z \in I$ in equation (2.1) we get $0 = \alpha(xz)d(y)$, for all

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

 $x, y, z \in I$ (2.2). Again replacing x by $zx, z \in I$ in equation (2.1) we get $0 = \alpha(zx)d(y)$, for all $x, y, z \in I$ (2.3). Subtracting eq.(2.2) from (2.3) $0 = \{\alpha(zx) - \alpha(xz)\}d(y) = \alpha(zx - z)$ we get $xz)d(y) = \alpha[x, z]d(y)$, for all $x, y, z \in I$. That is $0 = \alpha[I, I]d(I)$. Hence the result. So, let $G(I) \neq 0$, then as given $G(x \circ y) = a(xy \pm yx)$ for all (2.4). Replacing y by $yx, x \in I$ in $x, y \in I$ equation (2.4) we have $a(xyx \pm yx^2) =$ $G(x \circ yx) = G\{(x \circ y)x - y[x, x]\} =$ $G\{(x \circ y)x\} = G(x \circ y)x + \alpha(x \circ y)d(x) =$ $a (xy \pm yx)x + \alpha(x \circ y)d(x) = a (xyx \pm yx)x + \alpha(x \circ y)d(x) = \alpha(xyx \pm yx)x + \alpha(x \circ y)d(x) = \alpha(x)x + \alpha(x)x +$ yx^2) + $\alpha(x \circ y)d(x)$. Finally, we get $\alpha(x \circ y)d(x) = 0, x, y \in I$ (2.5). Replacing y by $zy, z \in I$ in eq. (2.5) we get $0 = \alpha(x \circ zy)d(x) =$ $\alpha\{z(x \circ y) + [x, z]y\}d(x) = \alpha(z)\alpha(x \circ y)d(x) +$ $\alpha[x, z]\alpha(y)d(x) = 0 + \alpha[x, z]\alpha(y)d(x)$. Finally we get $\alpha[x, z]\alpha(y)d(x) = 0, x, y, z \in I$. That is $\alpha[I,I]\alpha(I)d(I) = 0$ (2.6). Since I is left ideal and α is an automorphism of R, we have $\alpha(I)$ is a left ideal of R. It follows $\alpha[I, I]R\alpha(I)d(I) = 0$ (2.7). Again R is a semiprime ring, then it must contain a family $\Omega = \{P_i : i \in \Lambda\}$ of prime ideals such that $\bigcap_{i \in \Lambda} P_i = \{0\}$. If P is a typical member of Ω and $x \in I$, we have either $\alpha[x, I] \subseteq P$ or $\alpha(I)d(x) \subseteq P$. For fixed *P*, the sets $T_1 = \{x \in I : \alpha[x, I] \subseteq P\}$ and $T_2 = \{x \in I : \alpha(I)d(x) \subseteq P\}$ form two additive subgroups of I such that $T_1 \cup T_2 = I$. Therefore, either $T_1 = I$ or $T_2 = I$. That is either $\alpha[I, I] \subseteq P$ or $\alpha(I)d(I) \subseteq P$. Both together gives us that $\alpha[I,I]d(I) \subseteq P$ for any $P \in \Omega$. Therefore $\alpha[I,I]d(I) \subseteq \bigcap_{i \in \Lambda} P_i = \{0\}$. That is $\alpha[I,I]d(I) =$ {0}.

Corollary 2.2. Let *R* be a prime ring and *I* a nonzero left ideal of *R*. If *G* is a genealized skew derivation of *R* associated with a non-zero skew derivation *d* and an automorphism α of *R* such that $G(x \circ y) = a (x \circ y)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, then one of the following holds: (i) $\alpha(I)d(I) = 0$. (ii) *R* is commutative ring with char (R) = 2. (iii) *R* is commutative ring with char $(R) \neq 2$ and G(x) = ax for all $x \in R$.

Proof: As in theorem-2.1, we have $\alpha[I,I]d(I) = \{0\}$. That is $\alpha[x,y]d(z) = 0$ for all $x, y, z \in I$ (2.8). Replacing y with $wy, w \in I$ in eq.2.8 we have $\alpha[x,wy]d(z) = 0$ for all $x, y, z, w \in I$. $\alpha(w)\alpha[x,y]d(z) + \alpha[x,w]\alpha(y)d(z) = 0$ for all $x, y, z, w \in I$. $\alpha(w)\alpha[x,y]d(z) + \alpha[x,w]\alpha(y)d(z) = 0$ for all $x, y, z, w \in I$. That is $\alpha[I,I]\alpha(I)d(I) = \{0\}$. Hence $\alpha[I,I]R\alpha(I)d(I) = \{0\}$ (2.9). Since R is prime ring, either $\alpha[I,I] = \{0\}$ or $\alpha(I)d(I) = \{0\}$. If $\alpha(I)d(I) = \{0\}$, we get conclusion (i). So, let $\alpha[I,I] = \{0\}$, that is $\alpha[x,y] = 0$ for all $x, y \in I$ (2.10). Replacing y with ry in eq.2.10 we have $\alpha[x,ry] = 0$ for all $x, y \in I$ and $r \in R$. That is

 $\alpha(r)\alpha[x, y] + \alpha[x, r]\alpha(y) = 0$ for all $x, y \in I$ and $r \in R$. Hence $\alpha[I, R]\alpha(I) = 0$. Again, this gives $0 = \alpha[RI, R] = \alpha[R, R]\alpha(I)$. Since left annihilator of a left-sided ideal is zero, we have $\alpha[R,R] = 0$, hence [R,R] = 0, that is R is commutative. If char(R) = 2, we get conclusion (ii). So assume that $char(R) \neq 2$. Then our assumption $G(x \circ y) =$ $a(x \circ y)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$. That is G(xy + yx) = a(xy + yx). Since R is commutative we have 2G(xy) = 2a(xy)for all $x, y \in I$. Since char(R) $\neq 2$, then G(xy) =Therefore 0 = G(xy) - C(xy)a(xy) for all $x, y \in I$. $a(xy) = G(x)y + \alpha(x)d(y) - axy =$ ${G(x) - ax}y + \alpha(x)d(y)$ (2.11). Let $t \in I$, Since R is commutative, $xt \in I$. Replacing x by xt in eq.2.11, we have $0 = \{G(xt) - axt\}y +$ $\alpha(xt)d(y) = \{G(x)t + \alpha(x)d(t) - axt\}y +$ $\alpha(xt)d(y) = 0 + \alpha(xt)d(y)$. That is $\alpha(xt)d(y) =$ 0 for all $x, t, y \in I$ (2.12). Replacing y by ys, $s \in R$ in eq.2.12, we get $0 = \alpha(xt)d(ys) =$ $\alpha(xt)d(y)s + \alpha(xt)\alpha(y)d(s) = 0 +$ $\alpha(xt)\alpha(y)d(s) = \alpha(xt)\alpha(y)d(s)$. Replacing y by yr, $r \in R$, we get $0 = \alpha(xty)\alpha(r)d(s)$, that is $\alpha(I^3)Rd(R) = (0)$. Since R is prime we have either $\alpha(I^3) = 0$ or d = 0. If $\alpha(I^3) = 0$ implies $I^3 = 0$, since R is prime this forces I = 0. Which is a contradiction. Hence d = 0. From eq.2.11 we have $\{G(x) - ax\}y = 0$ for all $x, y \in I$, that is $\{G(x) - ax\}I = 0$ for all $x \in I$ which yields G(x) = ax for all $x \in I$. Replace x by $rx, r \in R$, we have G(rx) = arx, that is $\{G(r) - arx\}$ arx = 0, for all $x \in I, r \in R$. Hence G(r) = ar,

Theorem 2.3. Let *R* be a semiprime ring and *I* a non-zero left ideal of *R*. If *G* is a genealized skew derivation of *R* associated with a non-zero skew derivation *d* and an automorphism α of *R* such that $G[x, y] = a(xy \pm yx)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, then $\alpha[I, I]d(I) = 0$.

Proof: If G(I) = 0, then $0 = G(I^2) = G(I)I +$ $\alpha(I)d(I) = \alpha(I)d(I)$ and hence as in theorem 2.1 we have $\alpha[I, I]d(I) = 0$, which is our conclusion. So assume that $G(I) \neq 0$. Then by our assumption we have $G[x, y] = a(xy \pm yx)$ for all $x, y \in I$, (2.13). Put y =where $a \in \{0, 1, -1\}$ *yx* in equ. (2.13) G[x, yx] =and we get $a(xyx \pm yxx)$, that is $G\{y[x,x] + [x,y]x\} =$ $a(xy \pm yx)x$ this implies $G\{[x, y]x\} =$ $a(xy \pm yx)x$, implies $G[x, y]x + \alpha[x, y]d(x) =$ $a(xy \pm yx)x$. Now using equ.(2.13) we have $a (xy \pm yx)x + \alpha[x, y]d(x) = a (xy \pm yx)x,$ this yields $\alpha[x, y]d(x) = 0$ for all $x, y \in I$ (2.14). Again putting y = zy where $z \in I$ in eq. 2.14, we have $\alpha[x, zy]d(x) = 0$, implies

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

 $\alpha(z)\alpha[x,y]d(x) + \alpha[x,z]\alpha(y)d(x) = 0.$ Hence we get using eq.2.14, $\alpha[x,z]\alpha(y)d(x) =$ 0 for all $x, y, z \in I$ (2.15). That is $\alpha[I,I]\alpha(I)d(I) = 0$ which is same as eq. 2.6 in theorem-2.1. By same argument as in theorem-2.1, we conclude the result.

Corollary 2.4. Let *R* be a prime ring and *I* a nonzero left ideal of *R*. If *G* is a genealized skew derivation of *R* associated with a non-zero skew derivation *d* and an automorphism α of *R* such that $G[x, y] = a(xy \pm yx)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, then one of the following holds: (i) I[I, I] = 0. (ii) $G(x) = \mp ax$ for all $x \in I$. In case G(x) = -ax for all $x \in I$, with $a \neq 0$, then *char*(*R*) = 2.

Proof : By theorem - 2.3 we may conclude that $\alpha[I, I]d(I) = 0$. Then by same argument as given in corollary - 2.2, we get either R is commutative or $\alpha(I)d(I) = 0$. Let R is non-commutative, then for any $x, y \in I$, we have G(xy) = G(x)y + $\alpha(x)d(y) = G(x)y$, that is G acts as a left multiplier on I. Then for any $x, y, z \in I$, replacing y with yz in our hypothesis $G[x, y] = a(xy \pm yx)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, we have $G[x, yz] = a (xyz \pm yzx)$, that is $G\{y[x, z] +$ [x, y]z = $a\{(xy \pm yx)z \mp y[x, z]\}$ for all $x, y, z \in$ I (2.16). Since G acts as a left multiplier map on I, $G\{y[x, z] + [x, y]z\} = a\{(xy \pm z)\}$ this implies $yx)z \neq y[x,z]$. That is G(y)[x,z] + G[x,y]z = $a(xy \pm yx)z \mp ay[x,z]$. That is G(y)[x,z] + $a(xy \pm yx)z = a(xy \pm yx)z \mp ay[x, z]$. Hence $G(y)[x,z] = \mp ay[x,z].$ That is $\{G(y) \pm$ ay [x, z] = 0, for all $x, y \in I$. Replacing y with yu, where $u \in I$, we find that $\{G(y) \pm ay\}u[x, z] =$ 0, for all $x, y, u, z \in I$. Again replacing u with ru, where $r \in R$, we have $\{G(y) \pm ay\}RI[x, z] =$ 0, for all $x, y, z \in I$. Since R is prime, either I[I,I] = 0 or $G(y) = \mp ay$ for all $y \in I$. When G(y) = -ayassumption our G[x, y] =a(xy + yx)implies -a[x, y] = a(xy + yx) $x, y \in I$. This implies 2axy = 0. Replacing x with $rx, r \in R$, we have $2arxy = 0, x, y \in I$ and $r \in R$, that is $2aRI^2 = 0$ implies char(R) = 2.

Theorem 2.5. Let *R* be a semi-prime ring and *I* a non-zero left ideal of *R*. If *d* is a non-zero skew derivation of *R* such that $d(x)od(y) = a(xy \pm yx)$ for all $x, y \in I$, where $a \in \{0, 1, -1\}$, then $\alpha(I)[x, d(x)]_2 = 0$. In case I = R and *R* is 2-torsion free, *d* maps *R* into its center.

Proof: We have for all $x, y \in I, d(x)d(y) + d(y)d(x) = a(xy \pm yx)$ (2.17). Replacing y with $yx, x \in I$, we have d(x)d(yx) + d(yx)d(x) =

 $a(xyx \pm yxx)$. That $d(x){d(y)x +$ is $\alpha(y)d(x)\} + \{d(y)x + \alpha(y)d(x)\}d(x) =$ $a(xy \pm yx)x$. This implies $d(x)d(y)x + d(x)\alpha(y)d(x) + d(y)xd(x)$ $+\alpha(y)d(x)^2 = d(x)d(y)x + d(y)d(x)x.$ That $d(x)\alpha(y)d(x) + d(y)[x,d(x)] +$ is $\alpha(y)d(x)^2 = 0$ (2.18). Put y = xy in equ.(2.18), have $d(x)\alpha(y)d(x) + d(y)[x,d(x)] +$ we $\alpha(y)d(x)^2 = 0$. That is $d(x)\alpha(x)\alpha(y)d(x) + \{d(x)y +$ $\alpha(x)d(y) \{ [x, d(x)] + \alpha(x)\alpha(y)d(x)^2 = 0 \ (2.19).$ Left multiplying equ.(2.18) by $\alpha(x)$ and then subtracting from equ.(2.19), we get $d(x)\alpha(x)\alpha(y)d(x)$ + { $d(x)y + \alpha(x)d(y)$ }[x, d(x)]

 $+ \alpha(x)\alpha(y)d(x)^{2}$ $+ \alpha(x)\alpha(y)d(x)^{2}$ $- \alpha(x)d(x)\alpha(y)d(x)$ $- \alpha(x)d(y)[x, d(x)]$ $- \alpha(x)\alpha(y)d(x)^{2} = 0$

That is, $[d(x), \alpha(x)]\alpha(y)d(x) + d(x)y[x, d(x)] =$ 0. Replacing $\alpha(y)$ by y and $\alpha(x)$ by x in above [d(x), x]yd(x) + d(x)y[x, d(x)] = 0equation. (2.20). Replacing y by d(x)y in eq.2.20, [d(x),x]d(x)yd(x) + d(x)d(x)y[x,d(x)] = 0(2.21). Left multiplying eq.2.20 with d(x) and then subtracting from eq.2.21, we have [[d(x), x], d(x)]yd(x) = 0(2.22).Again replacing y by y[d(x), x] in eq.2.22, we have [[d(x), x], d(x)]y[d(x), x] d(x) = 0(2.23).Right multiplying eq. (2.22) by [d(x), x] and then subtracting from eq. 2.23, we get [[d(x), x], d(x)]y[d(x), x]d(x) -[[d(x), x], d(x)]yd(x)[d(x), x] = 0,implies [[d(x), x], d(x)]y[[d(x), x], d(x)] = 0. Replacing y by $\alpha(ry)$, $r \in R$ in this eq. we get $[[d(x), x], d(x)]\alpha(ry)[[d(x), x], d(x)] = 0$, that is $\left[\left[d(x), x \right], d(x) \right] \alpha(r) \alpha(y) \left[\left[d(x), x \right], d(x) \right] = 0.$ Hence we get $[[d(x), x], d(x)]R\alpha(y)[[d(x), x], d(x)] = 0.$ Left multiplying this with (y), eq. $\alpha(y)[[d(x), x], d(x)]R\alpha(y)|[d(x), x], d(x)| = 0.$ Now R is semiprime ring, this forces $\alpha(y)[[d(x), x], d(x)] = 0$, for every $x, y \in I$. That $\alpha(I)[[d(x), x], d(x)] = 0$ or $\alpha(I)[[x, d(x)], d(x)] = 0$. That is $\alpha(I)[x, d(x)]_2 =$ 0. In case I = R, $[x, d(x)]_2 = 0$ for all $x \in R$, and then by [5], $d(R) \subseteq Z(R)$.

REFERENCES:

- M. N. Daif and H. E. Bell, "Remarks on derivations on semiprime rings," *International Journal of Mathematics and Mathematical Sciences*, vol. 15, no. 1, pp. 205–206, 1992.
- [2] M. A. Quadri, M. S. Khan, and N. Rehman, "Generalized derivations and commutativity of prime rings," *Indian Journal of Pure and*

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

Applied Mathematics, vol. 34, no. 9, pp. 1393–1396, 2003.

- [3] B. Dhara, "Remarks on generalized derivations in prime and semiprime rings," *International Journal of Mathematics and Mathematical Sciences*, vol. 2010, Article ID 646587, 6 pages, 2010.
- [4] B. Dhara and A. Pattanayak, "Generalized derivations and left ideals in prime and semiprime rings," *ISRN Algebra*, vol.2011, Article ID 750382, 5 pages, 2011.
- [5] M. T. Kos, an, T.-K. Lee, and Y. Zhou, "Identities with Engel conditions on derivations," to appear in *Monatshefte fur Mathematik*".